Addition to "The Quasi-Kronecker Form for Matrix Pencils"

نویسندگان

  • Thomas Berger
  • Stephan Trenn
چکیده

We refine a result concerning singular matrix pencils and the Wong sequences. In our recent paper [T. Berger and S. Trenn, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 336–368] we have shown that the Wong sequences are sufficient to obtain a quasi-Kronecker form. However, we applied the Wong sequences again on the regular part to decouple the regular matrix pencil corresponding to the finite and infinite eigenvalues. The current paper is an addition to [T. Berger and S. Trenn, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 336–368], which shows that the decoupling of the regular part can be done already with the help of the Wong sequences of the original matrix pencil. Furthermore, we show that the complete Kronecker canonical form can be obtained with the help of the Wong sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-Kronecker Form For Matrix Pencils

We study singular matrix pencils and show that the so called Wong sequences yield a quasi-Kronecker form. This form decouples the matrix pencil into an underdetermined part, a regular part and an overdetermined part. This decoupling is sufficient to fully characterize the solution behaviour of the differential-algebraic equations associated with the matrix pencil. Furthermore, the Kronecker can...

متن کامل

On the Kronecker Canonical Form of Singular Mixed Matrix Pencils

Dynamical systems, such as electric circuits, mechanical systems, and chemical plants, can be modeled by mixed matrix pencils, i.e., matrix pencils having two kinds of nonzero coefficients: fixed constants that account for conservation laws and independent parameters that represent physical characteristics. Based on dimension analysis of dynamical systems, Murota (1985) introduced a physically ...

متن کامل

A Structured Staircase Algorithm for Skew-symmetric/symmetric Pencils

A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC/SYMMETRIC PENCILS RALPH BYERS , VOLKER MEHRMANN , AND HONGGUO XU Abstract. We present structure preserving algorithms for the numerical computation of structured staircase forms of skew-symmetric/symmetric matrix pencils along with the Kronecker indices of the associated skew-symmetric/symmetric Kronecker-like canonical form. These methods all...

متن کامل

A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations∗

We derive versal deformations of the Kronecker canonical form by deriving the tangent space and orthogonal bases for the normal space to the orbits of strictly equivalent matrix pencils. These deformations reveal the local perturbation theory of matrix pencils related to the Kronecker canonical form. We also obtain a new singular value bound for the distance to the orbits of less generic pencil...

متن کامل

Linking Systems and Matroid Pencils

A matroid pencil is a pair of linking systems having the same ground sets in common. It provides a combinatorial abstraction of matrix pencils. This paper investigates the properties of matroid pencils analogous to the theory of Kronecker canonical form. As an application, we give a simple alternative proof for a theorem of Murota on power products of linking systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013